Atomic Resolution Insights into Curli Fiber Biogenesis

نویسندگان

  • Jonathan D. Taylor
  • Yizhou Zhou
  • Paula S. Salgado
  • Ardan Patwardhan
  • Matt McGuffie
  • Tillmann Pape
  • Grzegorz Grabe
  • Elisabeth Ashman
  • Sean C. Constable
  • Peter J. Simpson
  • Wei-chao Lee
  • Ernesto Cota
  • Matthew R. Chapman
  • Steve J. Matthews
چکیده

Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Escherichia coli curli operons in directing amyloid fiber formation.

Amyloid is associated with debilitating human ailments including Alzheimer's and prion diseases. Biochemical, biophysical, and imaging analyses revealed that fibers produced by Escherichia coli called curli were amyloid. The CsgA curlin subunit, purified in the absence of the CsgB nucleator, adopted a soluble, unstructured form that upon prolonged incubation assembled into fibers that were indi...

متن کامل

The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli

Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on C...

متن کامل

Nucleation and growth of a bacterial functional amyloid at single fiber resolution

Curli are functional amyloids produced by proteobacteria like Escherichia coli as part of the extracellular matrix that holds cells together into biofilms. The molecular events that occur during curli nucleation and fiber extension remain largely unknown. Combining observations from curli amyloidogenesis in bulk solutions with real-time in situ nanoscopic imaging at the single-fiber level, we s...

متن کامل

New insight into the molecular control of bacterial functional amyloids

Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's...

متن کامل

Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers

Microorganisms produce functional amyloids that can be examined and manipulated in vivo and in vitro. Escherichia coli assemble extracellular adhesive amyloid fibers termed curli that mediate adhesion and promote biofilm formation. We have characterized the dye binding properties of the hallmark amyloid dye, Congo red, with curliated E. coli and with isolated curli fibers. Congo red binds to cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2011